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Abstract
The oral cavity is a warm and moist environment, suitable for

microorganisms to colonize and live in harmony as a community, so-
called biofilm. In this environment, antimicrobial peptides may play a
critical role in maintaining normal oral health and controlling innate
and acquired immune systems in response to continuous microbial
challenges in periodontal disease. Two major families of antimicrobial
peptides, found in the oral cavity, are defensin and cathelicidin.
Members of the defensin family are cysteine-rich peptides, synthesized
by plants, insects, and mammals. In the oral cavity, four alpha-defensins
are synthesized and stored in neutrophil granules, which are converted
into active peptides by proteolytic processing, while three human beta-
defensins (hBDs), hBD-1, hBD-2, and hBD-3, are predominantly
produced by oral epithelial cells. The only member of the cathelicidin
family found in humans is LL-37, which contains 37 amino acids and
begins with two leucines at its N-terminus. Clinically, differential
expression of antimicrobial peptides has been reported in different
types of periodontal disease, and their presence has been shown in
saliva and gingival crevicular fluid. In the first part of our review article,
basic knowledge of antimicrobial peptides will be discussed in detail.
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Introduction
The warm and moist environment in the oral cavity

is a unique niche suitable for a number of microorganisms

to colonize, proliferate, and live in harmony as a

community, so-called biofilm. Oral epithelium plays a

main role as a physical barrier between the microbial

biofilm in the external environment and underlying

connective tissue and blood vessels. Naturally, this

barrier can be disrupted, since the oral epithelium is the

only site in the body normally penetrated by a hard

tissue, namely, a tooth. The junction between oral

epithelium and the tooth is, therefore, considered a site

that is readily susceptible to infection from various

microorganisms living in dental plaque. Previously, the

role of oral epithelium was viewed as that of an innocent

bystander. However, it is now apparent that oral epithelial

cells can respond to continuous microbial challenges

from dental plaque by production of cytokines,

chemokines, and antimicrobial peptides, which enhance

inflammation and immune response in periodontal

tissues. Uncontrolled inflammation from excessive

production of these pro-inflammatory molecules is

considered one of the etiological factors in the

pathogenesis of periodontal disease.

Two well-characterized families of antimicrobial

peptides, including defensin and cathelicidin, are present

in saliva and GCF, and localized in the oral mucosa.1

These peptides include β-defensins that are expressed

in the oral epithelial cells, α-defensins that are secreted

from neutrophil granules, and LL-37, the only human

antimicrobial peptide in the cathelicidin family, which

mainly derives from neutrophil granules and to a lesser

extent from oral epithelial cells.2 The synthesis of some

of these antimicrobial peptides can be considerably up-

regulated upon exposure to oral microorganisms; thus,

these peptides are regarded as essential effector

molecules in innate immunity. In the first part, basic

knowledge regarding expression and regulation of

defensins and LL-37, including their differential

expression in healthy and diseased periodontal tissues

and in gingival crevicular fluid (GCF), and their regulation

in human primary gingival epithelial cells, will be

extensively reviewed. However, a review of other

antimicrobial peptides present in the oral cavity, such

as calprotectin, adrenomedullin, histatins, etc., is beyond

the scope of this article and will not be discussed.

General Information on Human Cathelicidin

and Defensin
Cathelicidin is a family of antimicrobial peptides

that contain a cathelin domain at their N-terminus and

a mature peptide at their C-terminus (Figure 1).3

Whereas the amino acid sequence of the cathelin domain

is conserved throughout animal species tested to date,

the sequence of the mature peptide exhibits considerable

variations, accounting for various molecular structures,

such as α-helix, β-sheet, etc., possibly reflecting the

nature of microbial diversity (Figure 1). The cathelin

domain primarily functions as a cathepsin L inhibitor,

from which the name of this domain is derived.4

However, it was later demonstrated that this domain

also possesses an antimicrobial function against

Escherichia coli and methicillin-resistant Staphylococcus

aureus, yet its antimicrobial mechanism is still largely

unknown.5 The first cathelicidin antimicrobial peptide

was isolated from bovine neutrophils.6 Subsequently,

several cathelicidin peptides were identified in various

mammals, particularly humans. The only cathelicidin in

humans, LL-37, an α-helical peptide (Figure 1A), is

derived from proteolytic processing of a precursor

peptide, human cationic antimicrobial protein-18, and

contains two leucines at its N-terminus.7,8

Defensin is a family of small cationic antimicrobial

peptides.  Their molecular structure is an anti-parallel

β-pleated sheet (red arrows in Figure 2) with six

conserved cysteine amino acids that form three disulfide

bonds (blue lines in Figure 2), functioning in stabilization

of their β-sheet structure.9  Moreover, some defensins,

especially human β-defensin-2 (hBD-2) and human

β-defensin-3 (hBD-3), contain an α-helical domain
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at their N-terminus (purple in Figures 2B and 2C).

Defensins, comprising several positively charged amino

acids that favorably interact with negatively charged

microbial membranes, can form a complex structure,

such as a dimeric structure.10 In addition, the defensin

peptides contain both hydrophobic and hydrophilic

domains in their molecules, a so-called amphipathic

structure. All of these properties, thus, make the

defensins suitable for membrane integration that

eventually leads to a pore formation in the membrane.

The pore-forming mechanism of the defensins is then

believed to be a crucial process in their antimicrobial

Figure 2 The molecular structure of hBD-1 (A), hBD-2 (B), and hBD-3 (C). Each is an anti-parallel β-pleated

sheet (red arrows) that contains three disulfide bonds (blue lines). Furthermore, an additional α-helical

domain (purple) near the N-terminus is present in hBD-2 (B) and hBD-3 (C).

Figure 1 The cathelicidin gene and propeptide. The different molecular structures of mature peptides comprise an

α-helix (A), such as LL-37, a cysteine-rich sheet (B), a tryptophan-rich linear peptide (C), and a

proline-rich linear peptide (D). UTR = an untranslated region, N = N-terminus, C = C-terminus.
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function. Therefore, it has been shown by a number of

studies that the defensins exert their broad spectrum of

antimicrobial activities against gram-negative and gram-

positive bacteria, fungi, and some enveloped viruses.9

The human defensin family can be further divided

into two subfamilies, including α-defensin and β-

defensin subfamilies. In the α-defensin subfamily, four

of the six α-defensins, human neutrophil peptide-1, -

2, -3, and -4 (HNP-1, -2, -3, and -4), are

synthesized and stored in neutrophil granules,11,12 while

the other two α-defensins, human defensin-5 and -6

(HD-5 and -6), are synthesized and stored in the

granules of Paneth cells, specialized epithelial cells

located at the crypts of Lieberkühn of the small

intestine.13,14  Being encoded by the same gene, the

pro-peptide of HNP-1, -2, and -3 comprises 94 amino

acids, which is successively cleaved by putative

proteolytic enzymes, yielding different sizes of the mature

peptides that are stored in azurophilic granules.15  The

number of amino acids in the mature peptides of HNP-

1, HNP-2, and HNP-3 varies from 29 to 30 amino

acids. On the other hand, HD-5 and HD-6 are stored

in Paneth cell granules as pro-peptides, and are

subsequently activated by trypsin digestion upon release

into the intestinal lumen.16 HNP-4 is encoded by

another gene, and its amino acid sequence completely

differs from that of HNP-1, HNP-2, and HNP-3, leaving

only the identical characteristic cysteines and some

arginines.12

In the β-defensin subfamily, four human β-

defensins, human β-defensin-1, -2, -3, and -4

(hBD-1, -2, -3, and -4), are principally expressed in

epithelial cells that cover several tissues and organs,

particularly skin and the mucosal surfaces of

gastrointestinal, respiratory, and urogenital tracts.

However, only hBD-1, -2, and -3 are expressed in

the oral cavity.17 HBD-1 and hBD-2 peptides are

localized in differentiated epithelial cells within the

suprabasal layers of normal gingival epithelium,2

whereas hBD-3 peptide is expressed in undifferentiated

epithelial cells within the basal layer,18 suggesting a

potential role for hBD-3 as a mediator to signal the

underlying connective tissue cells. HBD-1 is

constitutively expressed in several epithelial cell types,

especially gingival epithelial cells,19 whereas expression

of hBD-2, hBD-3, and hBD-4 is inducible upon

stimulation with pro-inflammatory cytokines or contact

with microorganisms.

Expression and Regulation of Human
Cathelicidin and Defensins

Human cathelicidin is mainly isolated from

neutrophil granules distinct from those that store

proteolytic enzymes, such as neutrophil elastase,

proteinase-3, etc., to prevent premature activation of

the cathelicidin peptide inside the neutrophils. Upon being

released into neutrophil phagosomes after bacterial

phagocytosis, the neutrophil cathelicidin is proteolytically

cleaved into a mature LL-37 peptide by proteinase-

3.20 Moreover, cathelicidin expression in other cell types

can be controlled by exposure to microorganisms, growth

factors, and differentiating agents. For instance, LL-37

expression in skin keratinocytes and gastric epithelial

cells is induced by Staphylococcus aureus and

Helicobacter pyroli, respectively.21,22 Furthermore, LL-

37 expression is up-regulated by insulin-like growth

factor-I and vitamin D, known to promote wound healing

and differentiation, respectively.23,24

In the oral cavity, LL-37 is expressed in buccal

and tongue mucosa,25 and its expression is up-

regulated in the inflamed gingival t issues.26

Correspondingly, the concentrations of LL-37 in the

gingival tissue, whether derived from neutrophils or from

gingival epithelium, correlate positively with the depth

of the gingival crevice, suggesting that LL-37 levels

may be used as one diagnostic tool in inflammatory

periodontal disorders.26 In addition, LL-37 peptide is

detected in saliva27 and GCF28, and the LL-37 levels

in GCF are significantly elevated in patients with chronic

periodontitis compared to those in patients with gingivitis
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or to those in healthy volunteers.29

The neutrophil α-defensin gene (DEFA1) is

located on chromosome 8 (8p23).9 HNP-1, HNP-2,

and HNP-3 mRNAs are mainly expressed in neutrophils,

and their respective proteins were first characterized

from azurophilic granules.11 Moreover, expression of

HNP-1, HNP-2, and HNP-3 can be detected in

Langerhans cells in the vicinity of epithelial dysplasia

adjacent to precancerous lesions and oral squamous

cell carcinoma, but their expression is not found in normal

oral mucosa.30  They are also present in ductal cells of

submandibular salivary glands from patients with oral

cancer.31

With respect to periodontal tissue, the detectable

amounts of HNP-1, HNP-2, and HNP-3 in GCF can

vary from 270 to 2000 nanogram per site (or

approximately equivalent to mg/ml), which is sufficient

for their antimicrobial function in periodontium.32 By

virtue of matrix assisted laser desorption ionization mass

spectrometry, it has been demonstrated that HNP-1 is

most abundant in GCF, whereas HNP-3 is least

abundant.33 Moreover, the concentrations of HNP-1,

HNP-2, and HNP-3 have been quantified in saliva.

These concentrations (up to twelve µg/ml) are variable

in the human population, and the median levels of HNP-

1,HNP-2, and HNP-3 in saliva are significantly higher

in children without dental caries than in those with dental

caries experience, suggesting the protective role of

neutrophil α-defensins against dental caries.34

The sizes of β-defensins are somewhat larger

than those of α-defensins. The first human β-defensin

is hBD-1, isolated from hemofiltrate passing through

the kidney at the nanomolar levels.35 The gene encoding

hBD-1, DEFB1, is on chromosome 8, in close proximity

to DEFA1, around 100-150 kilobases apart.36 DEFB1

contains two exons and one large 6962 base pair (bp)

intron, and the two exons encode a 362 bp

complementary DNA (cDNA) that is translated into an

hBD-1 pro-peptide.36 The hBD-1 pro-peptide is

subsequently cleaved into several hBD-1 mature

peptides, ranging from 36 to 47 amino acids long.

Widespread and low expression of hBD-1 has been

detected in various epithelia lining several organs, such

as trachea, bronchus, skin, small intestine, salivary

glands, etc.9

In oral mucosa, hBD-1 expression is found in

gingival epithelium, but is not associated with the amount

of IL-8 expression in the gingival tissue, suggesting

that the amount of hBD-1 expression does not correlate

with the degree of tissue inflammation, but varies among

different individuals.19 Confluent cultured gingival

epithelial cells constitutively express hBD-1 mRNA at

baseline levels; however, its expression is up-regulated

in a post-confluent culture, representing the state of

cellular differentiation in vitro.2 On the other hand, it

has been demonstrated that increased hBD-1

expression can, in turn, induce differentiation in skin

keratinocytes.37

By using a protein chip array together with surface

enhanced laser desorption/ionization and time-of-flight

mass spectrometry, hBD-1 peptide at a molecular mass

of about 4.7 kilodalton is detected in culture medium of

gingival epithelial cells.38 Highly variable amounts of

hBD-1 peptide have been found in saliva and GCF,

collected from different normal individuals.38 It is possible

that salivary ductal cells may contribute some hBD-1

peptide, detected in saliva, apart from the hBD-1 peptide

synthesis by oral epithelial cells.39 It is noteworthy that

hBD-1 and hBD-2 are neither expressed in cultured

gingival fibroblasts 19,40 nor found in the underlying

connective tissue of the oral mucosa.2

The second human β-defensin (hBD-2) was

first isolated in large amounts from psoriatic skin

keratinocytes.41 The gene encoding hBD-2 is EFB4,

which is located on chromosome 8, region 8p22-

p23.1, in close proximity to DEFA1 and DEFB1.42

DEFB4 contains one 1639 bp intron and two small

exons that encode a signal peptide domain and a mature

peptide, whose sizes are 23 and 41 amino acids long,

respectively.42 Expression of both hBD-1 and hBD-2
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is localized in the suprabasal layers of normal

epidermis,43 identical with their expression in normal

oral mucosa.2 HBD-2 peptide is stored in lamellar

granules in the spinous layer of epidermis, and later

released into the extracellular environment with other

lipids in the granular layer, suggesting that lipids covering

the skin function as a natural barrier against water

permeability and microbial invasion due to the presence

of antimicrobial peptides.44

Similar to the inducible expression of hBD-2 by

microorganisms and pro-inflammatory cytokines in other

cell types, hBD-2 mRNA is up-regulated in cultured

gingival epithelial cells in response to stimulation with

IL-α, TNF-β, phorbol ester, a potent epithelial activator,

and gram-negative periodontal bacteria, including

Aggregatibacter actinomycetemcomitans, Fusobacterium

nucleatum, and Porphyromonas gingivalis.40,45-48

Nevertheless, unlike the critical role of CD14, a

lipopolysaccharide (LPS) co-receptor, and nuclear

factor-kappa B (NF-κB) in hBD-2 induction in

respiratory epithelial cel ls and mononuclear

phagocytes,49,50 CD14 and NF-κB are neither critical

nor essential for hBD-2 up-regulation in gingival

epithelial cells.51 In fact, a purified LPS fraction of

Fusobacterium nucleatum or Aggregatibacter

actinomycetemcomitans is a poor hBD-2 activator in

gingival epithelial cells.40,48 Furthermore, p38 MAP

kinase and c-Jun N-terminal MAP kinase (JNK) control

hBD-2 mRNA up-regulation in response to

Fusobacterium nucleatum in gingival epithelial cells.51

Likewise, the MAP kinase pathways, but not the NF-

κB transcription factor, are critical for hBD-2 up-

regulation by the outer membrane protein 100 of

Aggregatibacter actinomycetemcomitans.52 Taken

together, these findings suggest different cellular

receptors and intracellular signaling mechanisms to

control hBD-2 up-regulation by different stimulants in

distinct cell types. In addition to the involvement of p38

MAP kinase and JNK in hBD-2 up-regulation by

Fusobacterium nucleatum, it is shown that an increase

in intracellular calcium ion and phosphorylated

phospholipase D, two important molecules in regulating

epithelial cell differentiation, are involved in hBD-2 up-

regulation by Fusobacterium nucleatum .53,54

Accordingly, the regulation of hBD-2 expression can

be controlled by both inflammation from bacteria and

epithelial differentiation.

The highest hBD-2 expression in gingival tissue

is found at the gingival margin, adjacent to microbial

plaque accumulation, and hBD-2 expression is localized

in differentiated epithelial cells within the suprabasal

layers of gingival epithelium.2 Moreover, the localization

of hBD-2 peptide is found not only in cultured gingival

epithelial cells that express involucrin, another marker

for differentiation, but also in stimulated cells with

infectious and pro-inflammatory stimulants.2 In contrast,

neither hBD-1 nor hBD-2 is expressed in junctional

epithelium, which consists of relatively undifferentiated

epithelial cells, implying that the junctional epithelium

may be more susceptible to infection than other areas

of gingival epithelium because of the lack of some

antimicrobial peptides.2 However, it is probable that other

antimicrobial peptides, such as α-defensins, LL-37,

etc., released from neutrophils that transmigrate from

blood vessels into the junctional epithelium and gingival

crevice, may perform this antimicrobial function instead.1

Using biochemical and molecular biology

techniques, the gene encoding hBD-3 (DEFB103) has

been cloned from skin keratinocytes and alveolar

epithelial cells, and the amino acid composition of hBD-

3 has been sequenced and classified as a novel peptide

in the β-defensin subfamily.55 DEFB103, containing

two small exons, is located 13 kb upstream from DEFB4

that encodes hBD-2 on chromosome 8.56 HBD-3

cDNA is translated into an hBD-3 pro-peptide that

comprises a signal peptide domain and a mature peptide

(22 and 45 amino acids long, respectively). The amino

acid sequence of hBD-3 is 43% identical to that of

hBD-2.56

In the oral cavity, hBD-3 mRNA and peptide
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are localized in the basal layer of normal gingival

epithelium.18 Furthermore, hBD-3 mRNA is expressed

in both inflamed and non-inflamed epithelium and

salivary glands,57 and its expression is up-regulated in

leukoplakia and oral lichen planus.58 In vitro, hBD-3

mRNA expression is induced in cultured epithelial cells

that are stimulated with IFN-γ, TNF-α, and IL-1β,55,56

although IFN-γ does not up-regulate hBD-2 mRNA.59

Consistently, it is later demonstrated that IFN-γ is a

primary inducer for hBD-3 expression, whereas IL-1β

and TNF-α are major stimulants for hBD-2

expression.60

With respect to up-regulation of hBD-3 by oral

microorganisms, hBD-3 mRNA expression is induced

by live nonperiodontopathic bacteria, including

Streptococcus sanguinis and Streptococcus gordonii,61

and some periodontopathic bacteria, including

Aggregatibacter actinomycetemcomitans,62 Prevotella

intermedia, and Fusobacterium nucleatum.61 In contrast,

three well known causative pathogens in chronic

periodontitis, including Porphyromonas gingivalis,

Tanerella forsythia, and Treponema denticola, down-

regulate hBD-3 mRNA expression, as well as IL-8

production and secretion in an oral epithelial cell line.61

This indicates that these so-called red-complex

periodontal pathogens may suppress innate immune

responses of oral epithelial cells by an immune-evading

mechanism, known as chemokine paralysis.

Furthermore, the red-complex bacteria can tolerate the

host immune response by being more resistant to LL-

37 and phagocytosis by neutrophils, indicating their

strong implication with chronic periodontal infection.63

Conclusions
Substantial variations in expression of small

cationic antimicrobial peptides, including LL-37 and

defensins, in periodontal tissues, GCF, and saliva, exist

and may be correlated with the pathogenesis of

periodontal disease, as well as that of other oral

inflammatory and infectious diseases. Therefore, the

association between altered expression of antimicrobial

peptides and some types of periodontitis should be

further explored in detail. Moreover, expression of some

antimicrobial peptides and their clinical significance in

other oral diseases should be further studied. Perhaps,

some peptides could be further developed as biomarkers

for diagnosis and/or prognosis of oral diseases in the

future.

It is also necessary to continue regulation studies

of some inducible antimicrobial peptides in order to

understand the mechanisms used to enhance expression

of these peptides. In quest of new adjunctive treatment

modalities for periodontitis, it is probable that

enhancement of antimicrobial peptide expression by

putative components of commensal bacteria that are

not harmful to the human body or by non-toxic agents,

similar to vaccination, may be of significant interest in

controlling the number of periodontal pathogens.
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